> Analyse > Test CCD > Facteur de conversion |
Lancement : Menu [Analyse] > [Test/Caractérisation de CCD] > [Facteur de conversion (multifenêtre)]
Cette fonction n'est pas accessible depuis la version light. Afin de pouvoir l'utiliser, il est nécessaire d'obtenir une clé "version complète" pour le logiciel.
But : Evaluer le facteur de conversion d'une caméra CCD à partir de plusieurs fichiers.
This method is very useful for computing the
conversion factor during system development because it is fast and
the accuracy is pretty good.
It just needs two biases and two flat field images. It performs
conversion factor measurement using NxM sub windows to avoid any
problems due to local defects. PRISM asks for the amount of windows
that is needed across the X and Y axis. Note that subwindows less
than 50x50 pixels can lead to false results, so for a 1x2K CCD for
instance, set 10 windows for the X direction and 20 for the Y
direction. To remove any prescan/overscan area set the X1,Y1,X2,Y2
windows so as to avoid them. then select the files.
Console output: Loading :Flat1.fits Loading :Flat2.fits Loading :Bias1.fits Loading :Bias2.fits For all the windows (540) the results are the following : window 1=4.49799e-/ADU X1=120 Y1=50 X2=158 Y2=78 window 2=4.11412e-/ADU X1=120 Y1=79 X2=158 Y2=107 window 3=4.31269e-/ADU X1=120 Y1=108 X2=158 Y2=136 window 4=4.14792e-/ADU X1=120 Y1=137 X2=158 Y2=165 window 5=4.0549e-/ADU X1=120 Y1=166 X2=158 Y2=194 .......... window 536=4.45689e-/ADU X1=1836 Y1=253 X2=1874 Y2=281 window 537=4.55087e-/ADU X1=1836 Y1=282 X2=1874 Y2=310 window 538=4.23658e-/ADU X1=1836 Y1=311 X2=1874 Y2=339 window 539=4.01395e-/ADU X1=1836 Y1=340 X2=1874 Y2=368 window 540=4.50764e-/ADU X1=1836 Y1=369 X2=1874 Y2=397 Conversion Factor=4.3775e-/ADU ± 0.012608 for 3457.054ADU RMS noise =7.0774e- ± 0.092687
Method used :
Note that the algorithm supports flats fields that have different
levels of illuminations, tests have been carried out with flats
having means with factor of 50 between the two images and the
feature passed it pretty well ! This method subtracts the biases
from the flat field images, divides the two previous flat images
and computes the RMS value (named N here) and the mean Signal for
each window. Then computes the D=2*S/N^2 figure, from D, the bias
noise is removed and yields to the conversion factor. The
corrections due to the different flat field levels are performed by
the software, but not mentioned in this explanation (to remain
clear).
Focntion script associée :
GetConvertFactor
Images de test :
Images de test
Conditions d'activation du menu :
Aucune